Homogeneous prime elements in normal two-dimensional graded rings
نویسندگان
چکیده
منابع مشابه
Normal Ideals of Graded Rings
For a graded domain R = k[X0, ...,Xm]/J over an arbitrary domain k, it is shown that the ideal generated by elements of degree ≥ mA, where A is the least common multiple of the weights of the Xi, is a normal ideal.
متن کاملOn graded classical prime and graded prime submodules
Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce several results concerning graded classical prime submodules. For example, we give a characterization of graded classical prime submodules. Also, the relations between graded classical prime and graded prime submodules of $M$ are studied.
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملComputing Hilbert–kunz Functions of 1-dimensional Graded Rings
According to a theorem of Monsky, the Hilbert–Kunz function of a 1-dimensional standard graded algebra R over a finite field K has, for i 0, the shape HKR(i) = c(R) · p i + φ(i), where c(R) is the multiplicity of R and φ is a periodic function. Here we study explicit computer algebra algorithms for computing such Hilbert–Kunz functions: the period length and the values of φ, as well as a concre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.07.012